dcm 4/15/2024
Except as noted, all problem numbers refer to the $3^{\text {rd }}$ edition of the textbook (Fitts 2024). Green text gives equivalent problems for the $2^{\text {nd }}$ edition of the textbook (Fitts 2013). Brown text gives equivalent problems for the $1^{{ }^{\text {st }}}$ edition of the textbook (Fitts 2002).
The problem numbering convention follows: 1-7 means Chapter 1, Problem 7.

week	notes	assignment
1		$\begin{aligned} & 1-7,1-8,1-9,1-11 \\ & 1-7,1-8,1-9,1-11 \\ & 1-1,1-2,1-3,1-6 \\ & \rightarrow \text { For last problem, derive equation with lecture Method } \# 1 . \end{aligned}$
2	Lab \#1	$\begin{aligned} & 2-3,2-15,2-17,2-20,2-21,3-1,3-4,3-5 \\ & 2-3,2-15,2-17,2-20,2-21,3-1,3-4,3-5 \\ & 2-2,2-7,2-9,2-11,2-12,3-1,3-3,3-4 \end{aligned}$
3		(see handout)
4		$\begin{aligned} & 3-3,3-6,3-13,3-14,3-17,6-20,6-21,6-22 \\ & 7-16,7-17,7-18,3-3,3-6,3-13,3-14,3-17 \\ & 6-11,6-12,6-13,3-2,3-5,3-9,3-10,3-13 \\ & \hline \end{aligned}$
5		$\begin{aligned} & 7-1,7-8,7-12,7-13,7-18,7-20,7-21 \\ & 6-1,6-8,6-12,6-13,6-18,6-20,6-21 \\ & 5-1,5-3,5-7,5-8,5-11,5-12,5-13 \\ & \hline \end{aligned}$
6		(see handout)
7		(see handout)
8	Lab \#2	(see handout)
9		$\begin{aligned} & 6-1,6-2,6-6,6-10,6-11 \\ & 7-1,7-2,7-6,7-10,7-11 \\ & 6-1,6-2,6-5,6-6,6-7 \end{aligned}$
10		(see handout)
11		$\begin{aligned} & 10-1,10-2,10-4,10-11(\mathrm{a}-\mathrm{c}) \\ & 10-1,10-2,10-4,10-11(\mathrm{a}-\mathrm{c}) \\ & 9-1,9-2,9-3,9-7(\mathrm{a}-\mathrm{c}) \\ & \rightarrow \text { Plus article summary on groundwater contamination (see HW\#7) } \end{aligned}$
12		(see handout)
13		(see handout)
14	Lab \#3	(see handout)

Answers \leftarrow Not here? Check the back of the book.

These partial answers will help determine whether you are on track. Some have been rounded.

Week 1

$1-11, \mathrm{G}=9.6 \times 10^{5} \mathrm{ft}^{3}\left(\operatorname{not} 9.4 \times 10^{5} \mathrm{ft}^{3}\right.$ as stated in the back of the book)

Week 2

$2-3$, at lake bottom, density $\rho=1.0026 \mathrm{~g} / \mathrm{cm}^{3}$
2-17, hints, (a) flow from high head to low head, (b) flow seeks path of least resistance
2-21, head at Well C is 476.69 m .
$3-1, K=2.8 \times 10^{-3} \mathrm{~cm} / \mathrm{s}$
Week 3
(answers included in homework assignment)
Week 4
3-3, hint, think about the "no slip boundary condition" in fluid mechanics
3-14(a), $T=35 \mathrm{ft}^{2} / \mathrm{d}$
$6-22, Q=210 \mathrm{ft}^{3} / \mathrm{d} \pm 20 \%$
Week 5
7-8, hints, (a) where is the sediment thickest? (b) where are the farms?
7-12, hint, compressive soil rapidly drains to sand above, but does not drain to sand below
$7-21, \Delta \mathrm{~h}=-1.7 \mathrm{~m}$
Week 6
Problem 2(f), $\mathrm{h}_{\mathrm{P}}=118 \mathrm{~m}$
Problem 2(g), v $=0.00073 \mathrm{~m} / \mathrm{d}$ at 73° south of east
Week 7
$6-15(\mathrm{c}), \mathrm{X}_{\text {divide }}=42.8 \mathrm{ft}$
Week 8
$9-8$, the bottom row of the $10 \times 10 \mathrm{~h}(\mathrm{x}, \mathrm{y})$ grid is as follows [m]:

BC	1	2	3	4	5	6	7	8	9	10	BC
200	200.9	201.7	202.5	203.3	203.8	204.3	206.3	209.9	213.4	216.7	220

$9-9$, hint, use the default porosity of 0.25 , and assume aquifer thickness $b=1.00 \mathrm{~m}$.
Week 9
$6-2, Q=549 \mathrm{~m}^{3} / \mathrm{d}$
$6-10,1976 \mathrm{ft}^{2} / \mathrm{d}$
Week 10
$8-2, \mathrm{~K}_{\mathrm{h}}=3.5 \mathrm{~m} / \mathrm{d}$
Week 11
10-1, hints, (a) more salt, more TDS (b) more time, more TDS
10-2, hint, think about the water in relation to its surroundings
10-11(b), total cations $8.91 \mathrm{meq} / \mathrm{L}$, total anions $9.20 \mathrm{meq} / \mathrm{L}$

Week 12

11-11, PCE $K_{d}=0.56 \mathrm{~L} / \mathrm{kg}$ with data from $0-350 \mathrm{~d}$, and $0.97 \mathrm{~L} / \mathrm{kg}$ with data from $350-650 \mathrm{~d}$. 11-16(a), diffusive flux $0.66 \mathrm{mg} / \mathrm{m}^{2} / \mathrm{d}$
11-16(b), advective flux $4500 \mathrm{mg} / \mathrm{m}^{2} / \mathrm{d}$
11-17, macrodispersive flux $220 \mathrm{mg} / \mathrm{m}^{2} / \mathrm{d}$
Week 13
$11-20(\mathrm{c}), \mathrm{dh} / \mathrm{dx}=-3.4 \times 10^{-3}$
$11-21, D_{\mathrm{mx}}=0.032 \mathrm{~m}^{2} / \mathrm{d}, \mathrm{D}_{\mathrm{my}}=0.0035 \mathrm{~m}^{2} / \mathrm{d}, \mathrm{D}_{\mathrm{mz}}=0.0021 \mathrm{~m}^{2} / \mathrm{d}$
Week 14
Problem 1(c), $\mathrm{I}_{\mathrm{x}} / \mathrm{L}_{x}=0.1$ and $\mathrm{I}_{\mathrm{y}} / \mathrm{L}_{\mathrm{y}}=0.2$

