

University of Colorado Denver Department of Civil Engineering CVEN-5334 Groundwater Hydrology

ASSIGNMENTS and ANSWERS

<u>dcm 4/15/2024</u>

Except as noted, all problem numbers refer to the 3rd edition of the textbook (Fitts 2024). **Green text gives equivalent problems for the 2nd edition of the textbook (Fitts 2013).** *Brown text gives equivalent problems for the 1st edition of the textbook (Fitts 2002).* The problem numbering convention follows: 1-7 means Chapter 1, Problem 7.

week	notes	assignment					
1		1-7, 1-8, 1-9, 1-11					
		1-7, 1-8, 1-9, 1-11					
		1-1, 1-2, 1-3, 1-6					
		\rightarrow For last problem, <i>derive</i> equation with lecture Method #1.					
2	Lab #1	2-3, 2-15, 2-17, 2-20, 2-21, 3-1, 3-4, 3-5					
		2-3, 2-15, 2-17, 2-20, 2-21, 3-1, 3-4, 3-5					
		2-2, 2-7, 2-9, 2-11, 2-12, 3-1, 3-3, 3-4					
3		(see handout)					
4		3-3, 3-6, 3-13, 3-14, 3-17, 6-20, 6-21, 6-22					
		7-16, 7-17, 7-18, 3-3, 3-6, 3-13, 3-14, 3-17					
		6-11, 6-12, 6-13, 3-2, 3-5, 3-9, 3-10, 3-13					
5		7-1, 7-8, 7-12, 7-13, 7-18, 7-20, 7-21					
		6-1, 6-8, 6-12, 6-13, 6-18, 6-20, 6-21					
		5-1, 5-3, 5-7, 5-8, 5-11, 5-12, 5-13					
6		(see handout)					
7		(see handout)					
8	Lab #2	(see handout)					
9		6-1, 6-2, 6-6, 6-10, 6-11					
		7-1, 7-2, 7-6, 7-10, 7-11					
		6-1, 6-2, 6-5, 6-6, 6-7					
10		(see handout)					
11		10-1, 10-2, 10-4, 10-11(a-c)					
		10-1, 10-2, 10-4, 10-11(a-c)					
		9-1, 9-2, 9-3, 9-7(a-c)					
		\rightarrow Plus article summary on groundwater contamination (see HW#7).					
12		(see handout)					
13		(see handout)					
14	Lab #3	(see handout)					

Answers ← Not here? Check the back of the book.

These partial answers will help determine whether you are on track. Some have been rounded.

Week 1

 $\overline{1-11, G} = 9.6 \times 10^5 \text{ ft}^3 \text{ (not } 9.4 \times 10^5 \text{ ft}^3 \text{ as stated in the back of the book)}$

Week 2

2-3, at lake bottom, density $\rho = 1.0026 \text{ g/cm}^3$ 2-17, *hints*, (a) flow from high head to low head, (b) flow seeks path of least resistance 2-21, head at Well C is 476.69 m.

3-1, K = 2.8×10^{-3} cm/s

<u>Week 3</u> (answers included in homework assignment)

Week 4

3-3, *hint*, think about the "no slip boundary condition" in fluid mechanics 3-14(a), T = 35 ft^2/d 6-22, Q = 210 $ft^3/d \pm 20\%$

Week 5

7-8, *hints*, (a) where is the sediment thickest? (b) where are the farms? 7-12, *hint*, compressive soil rapidly drains to sand above, but does not drain to sand below 7-21, $\Delta h = -1.7$ m

<u>Week 6</u> Problem 2(f), $h_P = 118 \text{ m}$ Problem 2(g), v = 0.00073 m/d at 73° south of east

 $\frac{\text{Week 7}}{6-15(\text{c})}$, $x_{\text{divide}} = 42.8 \text{ ft}$

Week 8

9-8, the bottom row of the 10x10 h(x,y) grid is as follows [m]:

BC	1	2	3	4	5	6	7	8	9	10	BC
200	200.9	201.7	202.5	203.3	203.8	204.3	206.3	209.9	213.4	216.7	220

9-9, *hint*, use the default porosity of 0.25, and assume aquifer thickness b = 1.00 m.

 $\frac{\text{Week 9}}{6-2, Q} = 549 \text{ m}^3/\text{d}$ 6-10, 1976 ft²/d

 $\frac{\text{Week 10}}{\text{8-2, K_h}} = 3.5 \text{ m/d}$

Week 11

10-1, *hints*, (a) more salt, more TDS (b) more time, more TDS 10-2, *hint*, think about the water in relation to its surroundings 10-11(b), total cations 8.91 meq/L, total anions 9.20 meq/L

Week 12

11-11, PCE K_d = 0.56 L/kg with data from 0-350 d, and 0.97 L/kg with data from 350-650 d. 11-16(a), diffusive flux 0.66 mg/m²/d 11-16(b), advective flux 4500 mg/m²/d 11-17, macrodispersive flux 220 mg/m²/d

$$\label{eq:week_13} \begin{split} & \underline{Week\ 13} \\ & \overline{11\text{-}20(c)},\ dh/dx = -3.4 x 10^{-3} \\ & 11\text{-}21,\ D_{mx} = 0.032\ m^2/d,\ D_{my} = 0.0035\ m^2/d,\ D_{mz} = 0.0021\ m^2/d \end{split}$$

 $\frac{Week \ 14}{Problem \ 1(c), \ I_x/L_x = 0.1 \ and \ I_y/L_y = 0.2}$