

University of Colorado Denver Department of Civil Engineering CVEN-5333 Surface Water Hydrology

ASSIGNMENTS and ANSWERS

 $\underline{\text{dcm } 4/17/2023} \leftarrow \underline{\textit{updated through HW}\#13}$

week	notes	assignment
1		(see handout)
2		5 th edition: 1.19, 1.21, 1.27, 2.28, ¹ 2.29, 2.31, 2.34
		6 th edition: 1.19, 1.21, 1.27, 2.27, ¹ 2.28, 2.30, 2.33
3		5 th edition: 8.1, 8.3, 8.9, 2.35, 2.36
		6 th edition: 8.1, 8.3, 8.9, 2.34, 2.35
4		(see handout)
5		(see handout)
6	1 st midterm	5 th edition: 3.25, 3.29, 3.32
		6 th edition: 3.25, 3.28, 3.32
7		4.10, 4.11, 4.16, 4.18, M-2005 11.7.2, M-2005 11.7.3
		5^{th} edition, 4.16, $x = 0.15$. 6^{th} edition, 4.16, $x = 0.1$
8		(see handout)
9		2.9, 2.10, 2.14, F-2002 1.7
10		5 th edition, 2.7, 2.11, 2.15, 2.21, 2.24
		6 th edition, 2.7, 2.15, 2.16, 2.21, 2.24
11		(see handout)
12	2 nd midterm	(see handout)
13		1.24, 6.4, 6.6, 6.12 (and handout)
14		(see handout)

Answers to Homework Problems

These partial answers will help determine whether you are on track. Some have been rounded.

Week 1 ←	Spring 2023
1.	30% of liquid fresh water is groundwater.
2.	2% of discharge from land to ocean is groundwater.
3.	91% of ocean evaporation precipitates back into the ocean.
4.	61% of precipitation onto land evaporates back into the atmosphere.
5.	The Sierra Nevada cast a rain shadow over Nevada (orographic warming/drying)
6.	Lake Erie warms and moistens the air, triggering lake effect snow on Buffalo.
Week 1	
1	16 cm
2(b)(ii)	Sample A $T_d = 21^{\circ}$ C
3	RH = 78%

^{4 (}b) Florida, (c) 902 mb, (d) absorbed into extratropical cyclone in Pennsylvania

¹ This problem is optional for Spring 2023.

5	Answers will vary.
Week 2 1.19(b) 1.21 1.27 2.27	3.041 in (you will need to round that) $i_{max} = 4.0$ in/hr from 16:20-16:35 5 th edition: (a) $i = 10$ cm/hr from 0-0.5 hr (b) P = 52.5 cm (c) Q _{peak} = 0.39 m ³ /s 6 th edition: (a) $i = 4$ cm/hr from 0-0.5 hr (b) P = 38 cm (c) Q _{peak} = 0.40 m ³ /s 0.24 in $\leftarrow 5^{th}$ edition 2.28
2.28 2.30 2.33	$E = 0.056 \text{ in on day } 14 \leftarrow 5^{th} \text{ edition } 2.29$ $f_o = 7.8 \text{ in/hr}; f_c = 1.2 \text{ in/hr}; k = 0.25 \text{ 1/hr} \leftarrow 5^{th} \text{ edition } 2.31$ (a) $\varphi = 0.2 \text{ in/hr} \leftarrow 5^{th} \text{ edition } 2.34$
Week 3 8.1 8.3 8.9 2.34 2.35	$q = 1 \times 10^{-6} \text{ cm/s}; v_s = 5 \times 10^{-6} \text{ cm/s}$ $Q = 100 \text{ m}^3/\text{d}; z = 47.1 \text{ m}$ (<i>Hint, assume aquifer is completely saturated.</i>) $T = 3.8 \text{ ft}^2/\text{s}$ when $F = 1 \text{ cm}, f = 2.9 \text{ cm/hr};$ when $F = 8 \text{ cm}, f = 1.0 \text{ cm/hr} \leftarrow 5^{th}$ edition 2.35 silt loam, low <i>n</i> , saturation time 2.3 hr $\leftarrow 5^{th}$ edition 2.36
<u>Week 4</u> 1 2(c) 3 4	63 cm 134 cm of SWE remain at the end of April 5 th for temperature increase of 4°C, $V = 4.4 \times 10^6$ m ³ , 64% snowmelt, peak April 25 th Answers will vary.
Week 5 3.1 3.2 3.3 3.5 3.6 3.8 3.11 3.24	Time series indicates increased variability from 2000-2010. (c) $C_w = -0.277$ (d) $p = 0.00142$ (a) $Q_{100} = 38,000$ cfs (a) $Q_{100} = 44,400$ cfs (a) $Q_{100} = 41,300$ cfs <i>hint:</i> Sketch the normal PDF for each of the five questions. (b) $p = 22.2\%$
Week 6 3.25 3.28 3.32	Answers will vary. Answers will vary. $\leftarrow 5^{th}$ edition 3.29 Answers in problem statement.
Week 7 4.10 4.11 4.16 4.18 11.7.2 ²	$Q_p = 5.3 \text{ cfs}; \text{ duration} = 16.7 \text{ hr}$ Q = 35 cfs at 228 hr $5^{\text{th}} \text{ edition: at } 30 \text{ hr}, I = 60 \text{ m}^3/\text{s}, Q = 88 \text{ m}^3/\text{s}$ $6^{\text{th}} \text{ edition: at } 20 \text{ hr}, I = 66 \text{ m}^3/\text{s}, Q = 163 \text{ m}^3/\text{s}$ This is a "show that" problem. (from Mays 2005) $V = 10.123 \text{ as ft}$ (do not use ΣOE solution in Table 11.7.1)
1 1 • / • 4	(10111111352005) = 10,125 at 10,125 at

 $^{^{2}}$ Mays (2005) Table 11.7.1. The cumulative volume for January 1966 should be 4,302 ac ft, not 3,302 ac ft as stated. This error propagates through the remainder of Table 11.7.1.

11.7.3	(from Mays 2005) V	= 7,223 a	c-ft				
Week 8 4.23 6.8 6.9 6.19	at 4 km, $Q_p = 28.96$ m impervious $A = 0.49$ a D = 18 in peak 19.2 cfs	n^{3}/s at 180 ac; $t_{c} = 5$.) min 48 min				
Week 9							
2.9	(a) peak 340 c	fs at 6 ho	ours				
2.10	(a) peak 1,560	cfs at 7 l	nours				
	(b) peak 750 c	efs at 4 ho	ours				
	(c) peak 1,160) cfs at 3 l	nours				
$2.14, 5^{\text{th}}$ editio	n Hint, use the f	following	chart to s	how $Q_p =$	$= 142 \text{ m}^3/\text{s}$	at 2.5 hours	:
	time [hr]	0-0.5	0.5-1	1-1.5	1.5-2		
	<i>i</i> [cm/hr]	1.0	1.25	2.5	1.0		
	f [cm/hr]	0.75	0.5	0.4	0.3		
$2.14, 6^{\text{th}}$ editio	n Hint, use the f	ollowing	chart to s	how $Q_p =$	$= 367 \text{ m}^3/\text{s}$	at 4.0 hours	:
	time [hr]	0-0.5	0.5-1	1-1.5	1.5-2	2-2.5	
	<i>i</i> [cm/hr]	0.75	1.5	3.0	1.75	0.5	
	f [cm/hr]	0.25	0.2	0.2	0.1	0.1	
Fitts (2002) 1.	7 QDRO peaks at	$\pm 3.2 \text{ m}^{3/2}$	s at ~15 h	ır.			

Week 10

2.7 5th edition, $T_R = 4.73$ hr; $Q_p = 420$ cfs

 6^{th} edition, $T_R = 4.65$ hr; $Q_p = 406$ cfs

2.11 5th edition, A = 310 acres; max(UH₃) = 62 cfs/in at 6 hr

2.15 5^{th} and 6^{th} editions, max(UH₁₅) = 125 cfs/in at 45 min

2.16 6^{th} edition, max(UH₂) = 362.5 cfs/in at 4 hr

- 2.21 5th and 6th editions, $T_R = 7.2$ hr; $Q_p = 670$ cfs
- 2.24 5^{th} and 6^{th} editions, max(UH) = 1978 cfs/in at 9.7 hr

Week 11

1 Complete exercise.

2 Match example in text.

Week 12

Note error, Page 287, Example 6.A.1, last equation should be:

$$D_{c} = \frac{0.2d^{-1}}{0.4d^{-1}} (4.3mg/L) \exp(-0.2d^{-1} \times 61km/41kmd^{-1}) = 1.6mg/L,$$

where the "-0.2 d⁻¹" is "- k_1 ", per equation (6.A.13).

Nazaroff and Alvarez-Cohen (2001) 6.12Short essay.Nazaroff and Alvarez-Cohen (2001) 6.55 $k_l = 0.17/d$; BOD_o = 7.9 mg/L; $D_c = 2.7$ mg/L

Week 13

1.24 (b) P = 8.16 in, (d) $i_{max} = 4.4$ in/hr between hours 3 and 4(c) $25\pm$ year storm

6.4	6 events when $MIT = 3 hr$
6.6	$i_{max} = 3.67$ in/hr at 12 hr using Table E6-4
6.12	maximum outflow 9.5 cfs at 90 minutes
extra	15-minute 10-year average intensity is 3.08 in/hr

Week 14

1	Complete exercise.
2	Essay question.