ASSIGNMENTS and ANSWERS
dcm 4/17/2023 \leftarrow updated through HW\#13

week	notes	assignment
1		(see handout)
2		$\begin{aligned} & 5^{\text {th }} \text { edition: } 1.19,1.21,1.27,2.28,{ }^{1} 2.29,2.31,2.34 \\ & 6^{\text {th }} \text { edition: } 1.19,1.21,1.27,2.27,{ }^{1} 2.28,2.30,2.33 \end{aligned}$
3		$\begin{aligned} & 5^{\text {th }} \text { edition: } 8.1,8.3,8.9,2.35,2.36 \\ & 6^{\text {th }} \text { edition: } 8.1,8.3,8.9,2.34,2.35 \end{aligned}$
4		(see handout)
5		(see handout)
6	$1^{\text {st }}$ midterm	$\begin{aligned} & 5^{\text {th }} \text { edition: } 3.25,3.29,3.32 \\ & 6^{\text {th }} \text { edition: } 3.25,3.28,3.32 \end{aligned}$
7		4.10, 4.11, 4.16, 4.18, M-2005 11.7.2, M-2005 11.7.3 $5^{\text {th }}$ edition, 4.16, $x=0.15 .6^{\text {th }}$ edition, $4.16, x=0.1$
8		(see handout)
9		2.9, 2.10, 2.14, F-2002 1.7
10		$\begin{aligned} & 5^{\text {th }} \text { edition, } 2.7,2.11,2.15,2.21,2.24 \\ & 6^{\text {th }} \text { edition. } \end{aligned}$
11		(see handout)
12	$2^{\text {nd }}$ midterm	(see handout)
13		1.24, 6.4, 6.6, 6.12 (and handout)
14		(see handout)

Answers to Homework Problems

These partial answers will help determine whether you are on track. Some have been rounded.
$\underline{\text { Week } 1} \leftarrow$ Spring 2023

1. 30% of liquid fresh water is groundwater.

2 . 2% of discharge from land to ocean is groundwater.
3. 91% of ocean evaporation precipitates back into the ocean.
4. 61% of precipitation onto land evaporates back into the atmosphere.
5. The Sierra Nevada cast a rain shadow over Nevada (orographic warming/drying)
6. Lake Erie warms and moistens the air, triggering lake effect snow on Buffalo.

Week 1
$1 \quad 16 \mathrm{~cm}$
2(b)(ii) \quad Sample A $T_{d}=21^{\circ} \mathrm{C}$
$3 \quad \mathrm{RH}=78 \%$
4 (b) Florida, (c) 902 mb , (d) absorbed into extratropical cyclone in Pennsylvania

[^0]5 Answers will vary.
Week 2
1.19(b) $\quad 3.041$ in (you will need to round that)
$1.21 \quad i_{\text {max }}=4.0 \mathrm{in} / \mathrm{hr}$ from 16:20-16:35
1.27
2.27
2.28
2.30
2.33

Week 3
8.1
$q=1 \times 10^{-6} \mathrm{~cm} / \mathrm{s} ; v_{s}=5 \times 10^{-6} \mathrm{~cm} / \mathrm{s}$
8.3
$\mathrm{Q}=100 \mathrm{~m}^{3} / \mathrm{d} ; \mathrm{z}=47.1 \mathrm{~m}$ (Hint, assume aquifer is completely saturated.)
$8.9 \quad \mathrm{~T}=3.8 \mathrm{ft}^{2} / \mathrm{s}$
2.34
2.35

Week 4 1
2(c)
63 cm
3
4
when $\mathrm{F}=1 \mathrm{~cm}, \mathrm{f}=2.9 \mathrm{~cm} / \mathrm{hr}$; when $\mathrm{F}=8 \mathrm{~cm}, \mathrm{f}=1.0 \mathrm{~cm} / \mathrm{hr} \leftarrow 5^{\text {th }}$ edition 2.35
silt loam, low n, saturation time $2.3 \mathrm{hr} \leftarrow 5^{\text {th }}$ edition 2.36

134 cm of SWE remain at the end of April $5^{\text {th }}$
for temperature increase of $4^{\circ} \mathrm{C}, \mathrm{V}=4.4 \times 10^{6} \mathrm{~m}^{3}, 64 \%$ snowmelt, peak April $25^{\text {th }}$ Answers will vary.

Week 5

3.1 Time series indicates increased variability from 2000-2010.
3.2
(c) $\mathrm{C}_{\mathrm{w}}=-0.277$
3.3
(d) $p=0.00142$
3.5
(a) $\mathrm{Q}_{100}=38,000 \mathrm{cfs}$
3.6
(a) $\mathrm{Q}_{100}=44,400 \mathrm{cfs}$
3.8
(a) $\mathrm{Q}_{100}=41,300 \mathrm{cfs}$
3.11 hint: Sketch the normal PDF for each of the five questions.
3.24
(b) $p=22.2 \%$

Week 6
3.25

Answers will vary.
3.28

Answers will vary. $\leftarrow 5^{\text {th }}$ edition 3.29
Answers in problem statement.
Week 7
4.10
$Q_{p}=5.3 \mathrm{cfs}$; duration $=16.7 \mathrm{hr}$
4.11
$Q=35 \mathrm{cfs}$ at 228 hr
4.16
$5^{\text {th }}$ edition: at $30 \mathrm{hr}, I=60 \mathrm{~m}^{3} / \mathrm{s}, Q=88 \mathrm{~m}^{3} / \mathrm{s}$
$6^{\text {th }}$ edition: at $20 \mathrm{hr}, I=66 \mathrm{~m}^{3} / \mathrm{s}, Q=163 \mathrm{~m}^{3} / \mathrm{s}$
4.18 This is a "show that..." problem.
11.7.2 ${ }^{2} \quad$ (from Mays 2005) $\mathrm{V}=10,123 \mathrm{ac}-\mathrm{ft}$ (do not use $\Sigma Q F_{i}$ column in Table 11.7.1)

[^1]
11.7.3 (from Mays 2005) $\mathrm{V}=7,223 \mathrm{ac}-\mathrm{ft}$

Week 8

$4.23 \quad$ at $4 \mathrm{~km}, Q_{p}=28.96 \mathrm{~m}^{3} / \mathrm{s}$ at 180 min
$6.8 \quad$ impervious $A=0.49 \mathrm{ac} ; t_{c}=5.48 \mathrm{~min}$
$6.9 \quad D=18$ in
6.19 peak 19.2 cfs

Week 9
2.9
2.10
(a) peak 340 cfs at 6 hours
(a) peak $1,560 \mathrm{cfs}$ at 7 hours
(b) peak 750 cfs at 4 hours
(c) peak $1,160 \mathrm{cfs}$ at 3 hours
2.14, $5^{\text {th }}$ edition Hint, use the following chart to show $Q_{\mathrm{p}}=142 \mathrm{~m}^{3} / \mathrm{s}$ at 2.5 hours:

time $[\mathrm{hr}]$	$0-0.5$	$0.5-1$	$1-1.5$	$1.5-2$
$i[\mathrm{~cm} / \mathrm{hr}]$	1.0	1.25	2.5	1.0
$f[\mathrm{~cm} / \mathrm{hr}]$	0.75	0.5	0.4	0.3

2.14, $6^{\text {th }}$ edition Hint, use the following chart to show $Q_{\mathrm{p}}=367 \mathrm{~m}^{3} / \mathrm{s}$ at 4.0 hours:

time $[\mathrm{hr}]$	$0-0.5$	$0.5-1$	$1-1.5$	$1.5-2$	$2-2.5$
$i[\mathrm{~cm} / \mathrm{hr}]$	0.75	1.5	3.0	1.75	0.5
$f[\mathrm{~cm} / \mathrm{hr}]$	0.25	0.2	0.2	0.1	0.1

Fitts (2002) $1.7 \quad$ Qdro peaks at $\pm 3.2 \mathrm{~m}^{3} / \mathrm{s}$ at $\sim 15 \mathrm{hr}$.
Week 10
$2.7 \quad 5^{\text {th }}$ edition, $T_{R}=4.73 \mathrm{hr} ; Q_{p}=420 \mathrm{cfs}$
$6^{\text {th }}$ edition, $T_{R}=4.65 \mathrm{hr} ; Q_{p}=406 \mathrm{cfs}$
$2.11 \quad 5^{\text {th }}$ edition, $A=310$ acres; $\max \left(\mathrm{UH}_{3}\right)=62 \mathrm{cfs} / \mathrm{in}$ at 6 hr
$2.155^{\text {th }}$ and $6^{\text {th }}$ editions, $\max \left(\mathrm{UH}_{15}\right)=125 \mathrm{cfs} /$ in at 45 min
$2.16 \quad 6^{\text {th }}$ edition, $\max \left(\mathrm{UH}_{2}\right)=362.5 \mathrm{cfs} /$ in at 4 hr
$2.215^{\text {th }}$ and $6^{\text {th }}$ editions, $T_{R}=7.2 \mathrm{hr}$; $Q_{p}=670 \mathrm{cfs}$
$2.245^{\text {th }}$ and $6^{\text {th }}$ editions, $\max (\mathrm{UH})=1978 \mathrm{cfs} /$ in at 9.7 hr
Week 11
1 Complete exercise.
2 Match example in text.
Week 12
Note error, Page 287, Example 6.A.1, last equation should be:
$D_{c}=\frac{0.2 \mathrm{~d}^{-1}}{0.4 \mathrm{~d}^{-1}}(4.3 \mathrm{mg} / \mathrm{L}) \exp \left(-0.2 \mathrm{~d}^{-1} \times 61 \mathrm{~km} / 41 \mathrm{kmd}^{-1}\right)=1.6 \mathrm{mg} / \mathrm{L}$,
where the "-0.2 d^{-1} " is " $-\mathrm{k}_{1}$ ", per equation (6.A.13).
Nazaroff and Alvarez-Cohen (2001) 6.12 Short essay.
Nazaroff and Alvarez-Cohen (2001) $6.55 \quad k_{l}=0.17 / \mathrm{d} ; \mathrm{BOD}_{\mathrm{o}}=7.9 \mathrm{mg} / \mathrm{L} ; D_{c}=2.7 \mathrm{mg} / \mathrm{L}$
Week 13
1.24
(b) $\mathrm{P}=8.16 \mathrm{in}$, (d) $i_{\max }=4.4 \mathrm{im} / \mathrm{hr}$ between hours 3 and 4 (c) $25 \pm$ year storm
6.4
6.6
6.12
extra
Week 14
1
2

6 events when MIT $=3 \mathrm{hr}$
$i_{\text {max }}=3.67 \mathrm{in} / \mathrm{hr}$ at 12 hr using Table E6-4
maximum outflow 9.5 cfs at 90 minutes
15 -minute 10 -year average intensity is $3.08 \mathrm{in} / \mathrm{hr}$

Complete exercise.
Essay question.

[^0]: ${ }^{1}$ This problem is optional for Spring 2023.

[^1]: ${ }^{2}$ Mays (2005) Table 11.7.1. The cumulative volume for January 1966 should be 4,302 ac•ft, not 3,302 ac•ft as stated. This error propagates through the remainder of Table 11.7.1.

