

ASSIGNMENTS and ANSWERS

dcm 8/19/2024

Except as noted, all problems refer to Bedient et al. (2019) 6th edition.

week	notes	assignment
1		(see handout)
2		1.19, 1.21, 1.27, 2.27, 2.28, 2.30, 2.33
3		8.1, 8.3, 8.9, 2.34, 2.35
4		(see handout)
5		(see handout)
6	1 st midterm	3.25, 3.28, 3.32
7		4.10, 4.11, 4.16 (use $x = 0.1$), 4.18 ,
		M-2005 11.7.2, M-2005 11.7.3
8		(see handout)
9		2.9, 2.10, 2.14, F-2002 1.7
10		2.7, 2.15, 2.16, 2.21, 2.24
11		(see handout)
12	2 nd midterm	(see handout)
13		1.24, 6.4, 6.6, 6.12 (and handout)
14		(see handout)

Answers to Homework Problems

These partial answers will help determine whether you are on track. Some have been rounded.

Week 1	
1	16 cm
2(b)(ii)	Sample A $T_d = 21^{\circ}$ C
3	RH = 78%
4	(b) Florida, (c) 902 mb, (d) absorbed into extratropical cyclone in Pennsylvania
5	Answers will vary.
Week 2	
1.19(b)	3.041 in (you will need to round that)
1.21	$i_{\text{max}} = 4.0 \text{ in/hr from } 16:20-16:35$
1.27	(a) $i = 4$ cm/hr from 0-0.5 hr (b) $P = 38$ cm (c) $Q_{peak} = 0.40$ m ³ /s
2.27	0.24 in
2.28	E = 0.056 in on day 14
2.30	$f_o = 7.8 \text{ in/hr}; f_c = 1.2 \text{ in/hr}; k = 0.25 \text{ 1/hr}$
2.33	(a) $\varphi = 0.2 \text{ in/hr}$

```
Week 3
                 q = 1 \times 10^{-6} \text{ cm/s}; v_s = 5 \times 10^{-6} \text{ cm/s}
8.1
                 Q = 100 \text{ m}^3/\text{d}; z = 47.1 \text{ m} (Hint, assume aguifer is completely saturated.)
8.3
8.9
                 T = 3.8 \text{ ft}^2/\text{s}
                 when F = 1 cm, f = 2.9 cm/hr; when F = 8 cm, f = 1.0 cm/hr
2.34
2.35
                 silt loam, low n, saturation time 2.3 hr
Week 4
                 63 cm
                 134 cm of SWE remain at the end of April 5<sup>th</sup>
2(c)
                 for temperature increase of 4^{\circ}C, V = 4.4 \times 10^{6} m<sup>3</sup>, 64^{\circ}% snowmelt, peak April 25^{th}
3
4
                 Answers will vary.
Week 5
3.1
                 Time series indicates increased variability from 2000-2010.
3.2
                 (c) C_w = -0.277
3.3
                 (d) p = 0.00142
3.5
                 (a) Q_{100} = 38,000 cfs
3.6
                 (a) Q_{100} = 44,400 cfs
3.8
                 (a) Q_{100} = 41,300 \text{ cfs}
                 hint: Sketch the normal PDF for each of the five questions.
3.11
3.24
                 (b) p = 22.2\%
Week 6
3.25
                 Answers will vary.
3.28
                 Answers will vary.
3.32
                 Answers in problem statement.
Week 7
4.10
                 Q_p = 5.3 cfs; duration = 16.7 hr
                 Q = 35 cfs at 228 hr
4.11
                 at 20 hr, I = 66 \text{ m}^3/\text{s}, Q = 163 \text{ m}^3/\text{s}
4.16
                 This is a "show that..." problem.
4.18
11.7.2^{1}
                 (from Mays 2005) V = 10,123 ac-ft (do not use \Sigma OF_i column in Table 11.7.1)
11.7.3
                 (from Mays 2005) V = 7,223 ac-ft
Week 8
4.23
                 at 4 km, Q_p = 28.96 \text{ m}^3/\text{s} at 180 min
                 impervious A = 0.49 ac; t_c = 5.48 min
6.8
                 D = 18 \text{ in}
6.9
6.19
                 peak 19.2 cfs
```

¹ Mays (2005) Table 11.7.1. The cumulative volume for January 1966 should be 4,302 ac ft, not 3,302 ac ft as stated. This error propagates through the remainder of Table 11.7.1.

Week 9

2.9 (a) peak 340 cfs at 6 hours

2.10 (a) peak 1,560 cfs at 7 hours

(b) peak 750 cfs at 4 hours

(c) peak 1,160 cfs at 3 hours

2.14 Hint, use the following chart to show $Q_p = 367 \text{ m}^3/\text{s}$ at 4.0 hours:

time [hr]	0-0.5	0.5-1	1-1.5	1.5-2	2-2.5
i [cm/hr]	0.75	1.5	3.0	1.75	0.5
f[cm/hr]	0.25	0.2	0.2	0.1	0.1

1.7 Q_{DRO} peaks at $\pm 3.2 \text{ m}^3/\text{s}$ at $\sim 15 \text{ hr.} \leftarrow \text{from Fitts (2002)}$

Week 10

2.7 $T_R = 4.65 \text{ hr}; Q_p = 406 \text{ cfs}$

2.15 $max(UH_{15}) = 125 \text{ cfs/in at } 45 \text{ min}$

2.16 $max(UH_2) = 362.5 \text{ cfs/in at 4 hr}$

2.21 $T_R = 7.2 \text{ hr}; Q_p = 670 \text{ cfs}$

 $2.24 \quad max(UH) = 1978 \text{ cfs/in at } 9.7 \text{ hr}$

Week 11

1 Complete exercise.

2 Match example in text.

Week 12

Note error, Page 287, Example 6.A.1, last equation should be:

D_c =
$$\frac{0.2d^{-1}}{0.4d^{-1}}$$
 (4.3mg/L)exp(-0.2d⁻¹ × 61km/41kmd⁻¹)=1.6mg/L,

where the "-0.2 d⁻¹" is "- k_1 ", per equation (6.A.13).

Nazaroff and Alvarez-Cohen (2001) 6.12 Short essay.

Nazaroff and Alvarez-Cohen (2001) 6.55 $k_1 = 0.17/d$; BOD_o = 7.9 mg/L; $D_c = 2.7$ mg/L

Week 13

1.24 (c) $25\pm$ year storm

6.4 6 events when MIT = 3 hr

6.6 $i_{max} = 3.67$ in/hr at 12 hr using Table E6-4

6.12 maximum outflow 9.5 cfs at 90 minutes

extra 15-minute 10-year average intensity is 3.08 in/hr

Week 14

1 Complete exercise.

2 Essay question.